1,126 research outputs found

    Young’s Modulus: Building a Device to Measure Material Strength to Understand Interatomic Bond Stiffness

    Get PDF
    Young’s Modulus is an equation that is to measure the strength in different materials. A common application of Young’s Modulus is measuring the breaking point of cables. The understanding of the Young’s Modulus equation and its applications is a standard part of the introductory undergraduate physics sequence. We sought to construct a lab apparatus that would enable physics undergraduate students to measure and verify the results of the Young’s Modulus equation. These macroscopic measurements can then be used to further understand inter-atomic bond stiffness. This poster reviews the design, construction, and testing of a Young’s Modulus lab experiment. This lab will be used by undergraduate students at Northwestern College, thus offering a further experimental application of a topic that was previously taught only theoretically.

    Isolating the electronic effects of systematic twist in highly substituted aromatic hydrocarbons using density functional theory

    Get PDF
    Density functional theory (DFT) was employed to investigate dodecaphenyltetracene as well as similar molecules containing differing backbone lengths and electron withdrawing groups with interest in manipulating the twist to lower the LUMO level for increased electron mobility. Optimization and frequency time-independent calculations followed by time-dependent (TD-DFT) energy calculations were performed at the B3LYP/G-311G level of theory to analyze electronic trends as a result of increased backbone length and consequently distorted end-to-end molecular twist. These calculations demonstrate a linear relationship with negative slope between the estimated HOMO-LUMO, fundamental, and optical gaps as a function of the number of fused rings along the polycyclic backbone. Contrasting these energy gaps with a separate series of identical molecules fixed into a planar configuration, the optimized twisted molecules display a pronounced red shift from steric hindrance due to phenyl substituents. In addition to the excitation energies, we applied a theoretical model for predicting exciton binding energy in planar polycyclic aromatic hydrocarbons to our series of twisted analogs, demonstrating a negligible effect of intramolecular twist on exciton binding energy. Evaluating higher levels of theory that incorporate dispersion and solvation effects, we found that our original gas-phase calculations sufficiently capture trends in expected excitation energies

    Designing and Building an Inverted Microscope

    Get PDF
    Iowa Stonybrook Lasers And DNA Course Embedded Research (ISLAND CURE) is a new research collaboration group that is focused on undergraduate research for both the students and the professors. The goal of this research collaboration was to create physics apparatuses to make biochemical measurements. One of the tools we are developing is an infrared optical tweezing system. This requires an inverted microscope to facilitate the trap. To observe one of these measurements, an inverted microscope is required to observe the sample. Inverted microscopes can be expensive, and our budget is limited. To overcome this issue, our research group decided to create our own inverted microscope with the minimal budget we had. This microscope can now be used for optical tweezing and observation of a live sample

    Building a Mach Zehnder Interferometer with Limited Resources

    Get PDF
    Interferometers are simple optical devices that function by splitting a coherent light beam. The beam is recombined using beam splitters and mirrors. The addition of the two light beams produces interference patterns in the forms of fringes which can be used to study the path taken by the two beams. This is old technology and we sought to construct an interferometer using rudimentary and cast-off equipment. The purpose is to show that modern physics concepts can be measured inexpensively and by undergraduate student design. Though we had no optics table and or optical mounts, by careful alignment and adjustments to the equipment, we were able to produce fringes whose intensity could measure phase changes of a light beam as it goes through various mediums. We were able to determine and learn more about the properties of light and produce successful results. This demonstrates a method of introducing modern physics lab applications at a low cost

    Cell-Free DNA Screening: Complexities and Challenges of Clinical Implementation

    Get PDF
    Screening for fetal aneuploidy in pregnant women using cell-free DNA has increased dramatically since the technology became commercially available in 2011. Since that time, numerous trials have demonstrated high sensitivity and specificity to screen for common aneuploidies in high-risk populations. Studies assessing the performance of these tests in low-risk populations have also demonstrated improved detection rates compared with traditional, serum-based screening strategies. Concurrent with the increased use of this technology has been a decrease in invasive procedures (amniocentesis and chorionic villus sampling). As the technology becomes more widely understood, available, and utilized, challenges regarding its clinical implementation have become apparent. Some of these challenges include test failures, false-positive and false-negative results, limitations in positive predictive value in low-prevalence populations, and potential maternal health implications of abnormal results. In addition, commercial laboratories are expanding screening beyond common aneuploidies to include microdeletion screening and whole genome screening. This review article is intended to provide the practicing obstetrician with a summary of the complexities of cell-free DNA screening and the challenges of implementing it in the clinical setting

    Sleep disturbance in movement disorders:insights, treatments and challenges

    Get PDF
    Sleep and circadian rhythm disturbances are central features of many movement disorders, exacerbating motor and non-motor symptoms and impairing quality of life. Understanding these disturbances to sleep is clinically important and may further our understanding of the underlying movement disorder. This review evaluates the current anatomical and neurochemical understanding of normal sleep and the recognised primary sleep disorders. In addition, we undertook a systematic review of the evidence for disruption to sleep across multiple movement disorders. Rapid eye movement sleep behaviour disorder has emerged as the most reliable prodromal biomarker for the alpha synucleinopathies, including Parkinson’s disease and multiple system atrophy, often preceding motor symptom onset by several years. Abnormal sleep has also been described for many other movement disorders, but further evidence is needed to determine whether this is a primary or secondary phenotypic component of the underlying condition. Medication used in the treatment of motor symptoms also affects sleep and can aggravate or cause certain sleep disorders. Within the context of movement disorders, there is also some suggestion of a shared underlying mechanism for motor and sleep pathophysiology, with evidence implicating thalamic and brainstem structures and monoaminergic neurotransmission. This review highlights the need for an understanding of normal and abnormal sleep within the movement disorder clinic, an ability to screen for specific causes of poor sleep and to treat sleep disturbance to improve quality of life. Key sleep disorders also act as important biomarkers and have implications in diagnosis, prognosis and the development of future therapies

    Corals in the hottest reefs in the world exhibit symbiont fidelity not flexibility

    Get PDF
    Reef-building corals are at risk of extinction from ocean warming. While some corals can enhance their thermal limits by associating with dinoflagellate photosymbionts of superior stress tolerance, the extent to which symbiont communities will reorganize under increased warming pressure remains unclear. Here we show that corals in the hottest reefs in the world in the Persian Gulf maintain associations with the same symbionts across 1.5 years despite extreme seasonal warming and acute heat stress (≥35°C). Persian Gulf corals predominantly associated with Cladocopium (clade C) and most also hosted Symbiodinium (clade A) and/or Durusdinium (clade D). This is in contrast to the neighbouring and milder Oman Sea, where corals associated with Durusdinium and only a minority hosted background levels of Cladocopium. During acute heat stress, the higher prevalence of Symbiodinium and Durusdinium in bleached versus nonbleached Persian Gulf corals indicates that genotypes of these background genera did not confer bleaching resistance. Within symbiont genera, the majority of ITS2 rDNA type profiles were unique to their respective coral species, confirming the existence of host-specific symbiont lineages. Notably, further differentiation among Persian Gulf sites demonstrates that symbiont populations are either isolated or specialized over tens to hundreds of kilometres. Thermal tolerance across coral species was associated with the prevalence of a single ITS2 intragenomic sequence variant (C3gulf), definitive of the Cladocopium thermophilum group. The abundance of C3gulf was highest in bleaching-resistant corals and at warmer sites, potentially indicating a specific symbiont genotype (or set of genotypes) that may play a role in thermal tolerance that warrants further investigation. Together, our findings indicate that co-evolution of host–Symbiodiniaceae partnerships favours fidelity rather than flexibility in extreme environments and under future warming

    Overview of the MISSE 7 Polymers and Zenith Polymers Experiments After 1.5 Years of Space Exposure

    Get PDF
    As part of the Materials International Space Station Experiment 7 (MISSE 7), two experiments called the Polymers Experiment and the Zenith Polymers Experiment were flown on the exterior of the International Space Station (ISS) and exposed to the low Earth orbit (LEO) space environment for 1.5 years. The Polymers Experiment contained 47 samples, which were flown in a ram or wake flight orientation. The objectives of the Polymers Experiment were to determine the LEO atomic oxygen erosion yield (Ey, volume loss per incident oxygen atoms, given in cu cm/atom) of the polymers, and to determine if atomic oxygen erosion of high and low ash containing polymers is dependent on fluence. The Zenith Polymers Experiment was flown in a zenith flight orientation. The primary objective of the Zenith Polymers Experiment was to determine the effect of solar exposure on the erosion of fluoropolymers. Kapton H (DuPont, Wilmington, DE) was flown in each experiment for atomic oxygen fluence determination. This paper provides an introduction to both the MISSE 7 Polymers Experiment and the MISSE 7 Zenith Polymers Experiment, and provides initial erosion yield results

    First Dark Matter Search Results from a 4-kg CF3I Bubble Chamber Operated in a Deep Underground Site

    Get PDF
    New data are reported from the operation of a 4.0 kg CF3I bubble chamber in the 6800 foot deep SNOLAB underground laboratory. The effectiveness of ultrasound analysis in discriminating alpha decay background events from single nuclear recoils has been confirmed, with a lower bound of >99.3% rejection of alpha decay events. Twenty single nuclear recoil event candidates and three multiple bubble events were observed during a total exposure of 553 kg-days distributed over three different bubble nucleation thresholds. The effective exposure for single bubble recoil-like events was 437.4 kg-days. A neutron background internal to the apparatus, of known origin, is estimated to account for five single nuclear recoil events and is consistent with the observed rate of multiple bubble events. The remaining excess of single bubble events exhibits characteristics indicating the presence of an additional background. These data provide new direct detection constraints on WIMP-proton spin-dependent scattering for WIMP masses >20 GeV/c2 and demonstrate significant sensitivity for spin-independent interactions

    Smallholder pig producers and their pork consumption practices in three districts in Uganda

    Get PDF
    Pig production is thriving in Uganda and the demand for pork is increasing, therefore offering potential for smallholder farmers for increased income through pig production. A multi-disciplinary value chain assessment conducted by the International Livestock Research Institute aimed to identify constraints and opportunities for pig producers as well as shortcomings in the safety of pork products in three districts in Uganda. Tools from participatory research were used to assess pork consumption habits as well as knowledge, attitudes and practices on pork safety among 295 pig producers. Pork is widely popular and mostly consumed well-cooked. However, practices such as roasting may lead to the ingestion of undercooked pork, and accompanying dishes such as raw vegetables may lead to cross-contamination of the meat causing food-borne diseases. The scarcity of data on zoonotic pig pathogens, such as erysipelas, salmonellosis, brucellosis and pork-borne parasites calls for further research
    • …
    corecore